Visit www.HVACnotebook.com for more spreadsheets.

CalcSheet EQ4 - Pump Laws (Math)

NOTE: Enter your data in yellow cells and results in blue cells will automatically update.

PUMP LAWS

Notes:

New GPM

New RPM

Water Density is constant, Specific Gravity of Water is 1, Pump Size is the same.

	New BHP From Change in GPM		
New BHP	$BHP_2 = \left(\frac{GPM_2}{GPM_1}\right)^3 \times BHP_1$ $GPM_1 \qquad 10,000$		
ev			
Ž	BHP ₁	10.00	
	GPM ₂	7,000	
	BHP ₂ =	3.43	

New GPM From Change in BHP		
$GPM_2 = \sqrt[3]{\frac{BHP_2}{BHP_1}} \times GPM_1$		
BHP ₁ 10.00		
GPM ₁ 10,000.00		
BHP ₂ 3.43		
GPM ₂ = 7,000		

New RPM From Change in BHP		
$RPM_{2} = \sqrt[3]{\frac{BHP_{2}}{BHP_{1}}} \times RPM_{1}$		
BHP ₁ 10.00		
RPM ₁	850	
BHP ₂	8.34	
RPM ₂ =	800	

	New HD From C	New HD From Change in GPM		
New HD	$HD_2 = \left(\frac{GPN}{GPN}\right)$	$HD_2 = \left(\frac{GPM_2}{GPM_1}\right)^2 \times HD_1$		
e v	GPM ₁	10,000		
~	HD ₁ 2.40			
GPM ₂ 8		8,000		
	HD ₂ =	1.54		

ID:150818 (Sample)

1	=	Existing	Condition;	2 = New	Condition
---	---	----------	------------	---------	-----------

New BHP From Change in RPM		
$BHP_2 = \left(\frac{RPM_2}{RPM_1}\right)^3 \times BHP_1$		
RPM ₁ 850		
BHP ₁	10.00	
RPM ₂ 800		
BHP ₂ = 8.34		

New GPM From Change in RPM	
$GPM_2 = \frac{RPM_2}{RPM_1} \times GPM_1$	
RPM ₁ 850	
GPM ₁ 10,000	
RPM ₂ 680	
GPM ₂ = 8,000	

New RPM Fron	New RPM From Change in HD	
$RPM_{2} = \sqrt{\frac{HD_{2}}{HD_{1}}} \times RPM_{1}$		
HD ₁ 2.40		
RPM ₁ 850		
HD ₂ 2.13		
RPM ₂ =	801	

New HD From Change in RPM	
$HD_2 = \left(\frac{RPM_2}{RPM_1}\right)^2 \times HD_1$	
RPM ₁ 850	
HD ₁	2.40
RPM ₂	800
HD ₂ =	2.13

www.HVACnotebook.com

New BHP From Change in HD		
$BHP_2 = \left(\frac{HD_2}{HD_1}\right)^{1.5} \times BHP_1$		
HD ₁	2.40	
BHP ₁	10.00	
HD ₂ 2.00		
BHP ₂ = 7.61		

New GPM From Change in HD	
$GPM_2 = \sqrt{\frac{HD_2}{HD_1}} \times GPM_1$	
HD ₁	2.40
GPM ₁	10,000
HD ₂ 1.54	
GPM ₂ =	8,010

New RPM From Change in GPM	
$RPM_2 = \frac{GPM_2}{GPM_1} \times RPM_1$	
GPM ₁ 10,000	
RPM ₁ 850	
GPM ₂ 8,000	
RPM ₂ = 680	

New HD From Change in BHP	
$HD_2 = 1.5 \sqrt{\frac{BHP_2}{BHP_1}} \times HD_1$	
BHP ₁	10.00
HD ₁	2.40
BHP ₂	8
HD ₂ =	2.00

EQ4:v5.8